Human Translation Initiation Factor eIF4G1 Possesses a Low-Affinity ATP Binding Site Facing the ATP-Binding Cleft of eIF4A in the eIF4G/eIF4A Complex

نویسندگان

  • Sabine R. Akabayov
  • Barak Akabayov
  • Gerhard Wagner
چکیده

Eukaryotic translation initiation factor 4G (eIF4G) plays a crucial role in translation initiation, serving as a scaffolding protein binding several other initiation factors, other proteins, and RNA. Binding of eIF4G to the ATP-dependent RNA helicase eukaryotic translation initiation factor 4A (eIF4A) enhances the activity of eIF4A in solution and in crowded environments. Previously, this activity enhancement was solely attributed to eIF4G, conferring a closed, active conformation upon eIF4A. Here we show that eIF4G contains a low-affinity binding site at the entrance to the ATP-binding cleft on eIF4A, suggesting that regulation of the local ATP concentration may be an additional reason for the enhancement in activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural and functional similarities between the central eukaryotic initiation factor (eIF)4A-binding domain of mammalian eIF4G and the eIF4A-binding domain of yeast eIF4G.

The translation eukaryotic initiation factor (eIF)4G of the yeast Saccharomyces cerevisiae interacts with the RNA helicase eIF4A (a member of the DEAD-box protein family; where DEAD corresponds to Asp-Glu-Ala-Asp) through a C-terminal domain in eIF4G (amino acids 542-883). Mammalian eIF4G has two interaction domains for eIF4A, a central domain and a domain close to the C-terminus. This raises t...

متن کامل

Interaction of translation initiation factor eIF4G with eIF4A in the yeast Saccharomyces cerevisiae.

Eukaryotic initiation factor (eIF) 4A is an essential protein that, in conjunction with eIF4B, catalyzes the ATP-dependent melting of RNA secondary structure in the 5'-untranslated region of mRNA during translation initiation. In higher eukaryotes, eIF4A is assumed to be recruited to the mRNA through its interaction with eIF4G. However, the failure to detect this interaction in yeast brought in...

متن کامل

Mutational analysis of the DEAD-box RNA helicase eIF4AII characterizes its interaction with transformation suppressor Pdcd4 and eIF4GI.

Eukaryotic initiation factor (eIF) 4A unwinds secondary and tertiary structures in the 5'-untranslated region of mRNA, permitting translation initiation. Programmed cell death 4 (Pdcd4) is a novel transformation suppressor and eIF4A-binding partner that inhibits eIF4A helicase activity and translation. To elucidate the regions of eIF4A that are functionally significant in binding to Pdcd4, we g...

متن کامل

Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4A.

Mammalian translation initiation factor 4F (eIF4F) consists of three subunits, eIF4A, eIF4E, and eIF4G. eIF4G interacts directly with both eIF4A and eIF4E. The binding site for eIF4E is contained in the amino-terminal third of eIF4G, while the binding site for eIF4A was mapped to the carboxy-terminal third of the molecule. Here we show that human eIF4G possesses two separate eIF4A binding domai...

متن کامل

Topology and Regulation of the Human eIF4A/4G/4H Helicase Complex in Translation Initiation

The RNA helicase eIF4A plays a key role in unwinding of mRNA and scanning during translation initiation. Free eIF4A is a poor helicase and requires the accessory proteins eIF4G and eIF4H. However, the structure of the helicase complex and the mechanisms of stimulation of eIF4A activity have remained elusive. Here we report the topology of the eIF4A/4G/4H helicase complex, which is built from mu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2014